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11.1.0 Temperature Scale 

The job of a thermometer is to measure temperature. Technically, a thermometer measures its own 

temperature. As such, the thermometer must first achieve thermal equilibrium1 with the object whose 

temperature we’re trying to measure.  

For example, to measure the temperature of a beaker of water using the mercury-in-glass 

thermometer, we must first allow the mercury to attain thermal equilibrium with the water (by 

immersing the bulb of the thermometer in the beaker of water). Next we inspect the volume of the 

mercury. Since mercury expands and contracts measurably with temperature, its volume makes a 

good thermometric property. All that’s needed now is a scheme to convert the volume to a numerical 

value representing the temperature. So from that value everyone knows exactly how hot or how cold 

it is. This is where the temperature scale comes in.  

 

11.1.1 Empirical Scale 

All empirical temperature scales require some reference temperatures for calibration. The freezing 

and boiling points of water are the obvious choices since they are easily reproducible temperatures. 

Below are the prominent scales developed in the 18th century. 

 

 
Year 

introduced 
Symbol Freezing point Boiling point 

Rømer scale 1701 °Rø 7.5 60 

Fahrenheit scale 1724 °F 32 212 

Réaumur scale 1730 °Ré 0 80 

Delisle scale 1732 °D 150 0 

Centigrade scale 1742 °C 0 100 

 

The centigrade scale should feel familiar to you because it looks similar to the Celsius scale we are 

using today. However, the centigrade scale is in no way superior to the other scales in this table. They 

are all empirical scales, based on arbitrarily chosen thermometric properties of water, namely the 

freezing and boiling points of water. They are also relative (instead of absolute) scales which do not 

reference the absolute zero (coldest possible) temperature. On these scales, 0°C does not represent 

the minimum temperature, and 40°C is not twice as hot as 20°C. 

                                                

1 “Thermal equilibrium” means “same temperature”. 

http://www.xmphysics.com/11.1.0
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11.1.2 Absolute Scale 

The first circumstantial evidence of the existence of an absolute zero temperature was provided in 

1808 by the discovery of the pressure law: for a given mass of ideal gas, the pressure exerted by the 

gas increases linearly with its temperature, if the volume is kept constant. In fact, constant-volume 

gas thermometers were the gold standard for temperature calibration in those times. Plotting the 

pressure vs temperature graphs for different types of gases (e.g. He, H2, O2, N2 etc), every gas yields 

a straight line graph.  

 

By extrapolating the lines leftward (towards low temperatures that was not attainable physically in the 

laboratory2), one could obtain the theoretical temperature at which the pressure of a gas hypothetically 

hits zero. This temperature turned out to be -273.15°C, for each and every gas (hydrogen, nitrogen, 

oxygen, etc)! Naturally, this was speculated to be the absolute zero temperature, the coldest possible 

temperature at which all molecular motion ceases3. 

 

1848, the great Scottish physicist Lord Kelvin published a paper titled “On an Absolute Thermometric 

Scale” in which he pointed out that the principle of the Carnot Cycle4 can be used as the basis for a 

thermodynamics scale of temperature that is universal and independent of any property of any 

particular substance. He also proposed that the absolute zero temperature be assigned the value of 

zero degree on this proposed scale. This scale is now known as the Kelvin scale. It is a departure 

from empirical scales because it is based on the laws of thermodynamic which applies to all materials. 

It is also an absolute scale because it starts from 0 K which is the absolute zero temperature. 

 

  

                                                

2 Note also that most gases liquefy or stop behaving as ideal gases long before this temperature is reached. 
3 Later when it was understood that zero motion is physically impossible (through quantum considerations), the 
absolute zero temperature came to be understood as the temperature of minimum (not zero) molecular motion.  
4 Just briefly, the Carnot Cycle is a theoretical ideal thermodynamic cycle proposed by French physicist Sadi 
Carnot in 1824. It shows that the efficiency of all reversible heat engines operating between two heat reservoirs 
depends only on the temperatures of the reservoirs, regardless of the working fluid. 
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For convenience, the interval of one Kelvin (K) is chosen to match the interval of one degree 

centigrade (°C). With the lowest temperature (what used to be −273.15 °C on the centrigrad scale) 

anchored at 0 K, the ice and steam points corresponds to 273.15 K and 373.15 respectively. Using 

such big numbers for everyday life temperatures can be cumbersome. Imagine reporting your body 

temperature as 310 K and the weather man forecasting 303 K | 299 K for a hot day. For this reason, 

the Celsius scale was launched. The Celsius scale inherits the °C symbol of the centigrade scale. By 

design, the temperature in Celsius q is related to the temperature in kelvin T by 

- 273.15Tq=  

 

Coming full circle for the sake of ordinary folks, ice continues to melt at 0°C and water continues to 

boil at 100°C. But the reincarnation of the centigrade scale as the Celsius scale marks the transition 

from empirical to thermodynamic scale. And the confirmation of the absolute zero temperature truly 

represents a huge advancement in the field of thermodynamics. 
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11.2.0 Kinetic Theory of Matter 

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed 

on to the next generation of creatures, what statement would contain the most information in the 

fewest words? I believe it is the atomic hypothesis that all things are made of atoms ð little 

particles that move around in perpetual motion, attracting each other when they are a little 

distance apart, but repelling upon being squeezed into one another. In that one sentence, you 

will see, there is an enormous amount of information about the world, if just a little imagination and 

thinking are applied. 

~ Richard Feynman 

 

Feynman is so right! For a start, the kinetic theory of matter (or the atomic hypothesis, as Feynman 

called it) is able to explain the different states of matter. 

 

 

Something is solid when it has a fixed volume and shape. The 

intermolecular forces among the molecules in a solid must be very strong, 

such that every molecule is bound by its neighboring molecules to a fixed 

position, resulting in a rigid structure called a lattice. 

 

 

A liquid has a fixed volume but no fixed shape. This suggests that the 

intermolecular forces among liquid molecules is strong enough to hold one 

another together, but weak enough to allow for molecules to swing from one 

neighboring molecule to another. 

 

 

A gas has neither fixed volume nor shape. The intermolecular forces are so 

weak that the molecules move freely and independently from one another. 

They zip around happily, confined only by the walls of their containers. 

 

watch animation at xmphysics.com 

 

We are just getting started. As we shall see, the kinetic theory forms the basis for all thermal concepts, 

including temperature, heat and internal energy. 

 

http://www.xmphysics.com/11.2.0
http://www.xmphysics.com/11.2.0
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11.2.1 Temperature, Heat and Thermal Equilibrium 

Let’s start by imagining a one-dollar coin. It is stationary so it has zero KE. It is on the floor so it is 

already at zero GPE (assuming it can’t fall even lower). So does it mean that the coin has zero energy? 

 

Nope. As a 7.62 g steel disc, the coin’s centre of mass is stationary. But the 228.4 10³  atoms5 that 

make up the coin are each jiggling like crazy about their own equilibrium positions. The energy of the 

individual atoms that make up the coin is the coin’s thermal energy. The average amount of jiggling 

manifests as the temperature of the coin. To be precise, you will learn later that temperature is a 

measure of the average translational KE of the particles. 

 

If the coin is dropped into hot water, thermal energy is transferred from the water to the coin until the 

atoms of the coin are jiggling with the same average translational KE as the molecules of the water. 

This transfer of thermal energy is called heat. And the direction of heat transfer is always from high 

to low temperature. When the coin and water are done with the exchange of heat because they have 

reached the same temperature, they are said to have reached thermal equilibrium. 

 

Finally, we introduce the concept of internal energy U. Basically, the internal energy of a system is 

the summation of the KE and PE of the individual particles (that make up the system). 

 

microscopic microscopicU KE PE= +
 

 

 

                                                

5 Just a rough estimation, based on molar mass of 55 g/mol for steel. 
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11.2.2 Specific Heat and Latent Heat 

Imagine we toss the coin into a furnace. If heat is supplied to the coin at a constant rate, its 

temperature would also rise at a constant rate. The heat supplied is used to increase the average KE 

of the jiggling atoms, manifesting in the rising temperature. In fact, the amount of heat required to 

raise the temperature of a unit mass of a substance by one unit of temperature is called the specific 

heat capacity c. 

Q mc q= D 

 

There comes a point when the coin starts to melt. As the coin is melting, the temperature of the coin 

stays constant. (It resumes its ascent only after the coin is completely melted.) But heat is still being 

supplied at the same constant rate. So what happened to all the heat gained by the coin? 

 

During the phase change, the heat supplied is used to increase the microscopic potential energy of 

the atoms in the coin. Since the average KE is constant, the temperature stays constant. But the 

increase in potential energy is evident because we can see the coin changing from solid phase to 

liquid phase. In fact, the amount of heat needed to convert a unit mass of a substance from solid to 

liquid form is called the specific latent heat of fusion Lf. 

fQ mL=  

 
Likewise, the amount of heat needed to convert a unit mass of a substance from liquid to vapour form 

is called the specific latent heat of vaporization Lv. 

vQ mL=  

 

A quick question for you: which has more PE? 1 kg of water or 1 kg of ice? A common misconception 

is that the ice has more PE since its molecules are more tightly bound. This is totally wrong. The 

correct concept is that solids have the most negative PE, liquids have less negative PE, and (ideal) 

gases have zero PE. 
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http://www.xmphysics.com/11.2.2
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As a solid lattice, the atoms in the coin are bound very strongly by one another so each atom sits 

tightly in a (deep and narrow) potential energy well. At the melting point, the atoms are jiggling 

vigorously enough to jiggle themselves out of the grid-lock they collectively imposed on one another. 

After the restructuring, the intermolecular forces are much weaker in the liquid form so the potential 

energy wells becomes shallower and broader. This represents an increase in PE! 

 

Likewise, vaporization requires an increase in microscopic PE. In the gaseous state, the atoms are at 

an infinite distance away from one another and therefore have zero potential energy. The required 

increase in potential energy (from some negative value to zero) is the latent heat of vaporization! In 

casual terms, we say that the latent heat of vaporization is spent on breaking down the intermolecular 

bonds completely and doing work against the atmospheric pressure (since the volume usually 

expands significantly after boiling).  

 

  

watch videos at xmphysics.com 

 

  

http://www.xmphysics.com/11.2.2
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11.3.0 Ideal Gas 

An ideal gas is an idealized gas model. According to the kinetic theory,  

1. an ideal gas consists of a large number of gas particles in random motion, undergoing elastic 

collisions with one another and the walls of the container. 

2. No forces act on the molecules except during elastic collisions of negligible duration. 

3. The volume of the gas particles are negligible compared to the volume of the gas. 

 

At standard temperature and pressure, most real gases including nitrogen, oxygen, hydrogen, noble 

gases, and some heavier gases like carbon dioxide can be treated as ideal gases within reasonable 

tolerances. Generally, a gas behaves more like an ideal gas at higher temperature and lower pressure, 

as the potential energy due to intermolecular forces becomes less significant compared with the 

particles' kinetic energy, and the size of the molecules becomes less significant compared to the empty 

space between them. 

 

11.3.1 Equation of State for an Ideal Gas 

It is impossible to analyze each and every one of the atoms or molecules in a system. Fortunately, a 

set of state variables, namely the pressure p, volume V and temperature T, can be used to describe 

the state of the system. An equation used to model the relationship among the state variables (of a 

given amount of substance) is called an equation of state. 

 

The equation of state for an ideal gas is 

pV nRT=  

where  n is the amount of substance in moles, and 

1 18.31 J K  molR - -=  is the molar gas constant. 

 

Since each mole contains 236.02 10AN = ³  particles (called the Avogadro’s number), the equation of 

state can also be written as 

( )( )A

A

R
pV nN T

N

NkT

=

=

 

where N is the number of gas particles, and 

23 11.38 10  J K
A

R
k

N

- -= = ³  is the Boltzmann’s constant. 

http://www.xmphysics.com/11.3.1
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¶ When applying this equation, one must be careful to use the number with the correct units. The 

pressure p must be the absolute pressure and not the gauge pressure (i.e. pressure relative to 

atmospheric pressure), the amount of substance n must be in moles, and the temperature T must 

be the thermodynamic temperature in Kelvin. 

¶ Historically, pV nRT= was derived empirically by combining Boyle’s law and Charles’ law. In 

actual fact, it can also be derived from first principles using the kinetic theory of gases and a 

probability distribution function called the Maxwell-Boltzmann distribution. 

 

  

watch videos at xmphysics.com 

 

11.3.2 Root-mean-square Speed 

According to the kinetic theory, a gas consists of an unimaginably large number 

of gas particle in random motion. It is impossible to analyze the motion of each 

and every gas particle. But having large number of particles in random motion 

also means that the system as a whole can be modelled accurately using 

statistical methods. 

watch animation at xmphysics.com 

 

For example, a useful quantity is 
2c , the mean-square speed of the gas particles6,  

2 2 2 2
2 1 2 3 ... Nc c c c

c
N

+ + +
=  

If we take the square root of 
2c , we obtain crms, the root-mean-square speed of the gas particles, 

2 2 2 2
2 1 2 3 ... N

rms

c c c c
c c

N

+ + +
= =  

                                                

6 Note that x  is the shorthand notation for average of x. 

http://www.xmphysics.com/11.3.1
http://www.xmphysics.com/11.3.2
http://www.xmphysics.com/11.3.2
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Worked Example 1 

For a mickey-mouse scenario of 5 gas particles moving along the x-axis with velocities  

-2 m s-1, -1 m s-1, 0 m s-1, +1 m s-1 and +2 m s-1 

Calculate 

a) mean-square speed 2c , 

b) root-mean-square speed crms, 

c) average speed c  

d) average velocity v  

of the gas particles. 

 

Solution 

a) 
2 2 2 2 2

2 2 22.0 1.0 0.0 1.0 2.0
2.0 m  s

5
c -+ + + +
= =   

b) 2 12.0 1.4 m srmsc c -= = =  

c) 12.0 1.0 0.0 1.0 2.0
1.2 m s

5
c -+ + + +
= =  and 

d) 1( 2.0) ( 1.0) 0 1.0 2.0
0.0 m s

5
v -- + - + + +
= =   

 

Note that 

¶ Since an ideal gas contains large number of gas particles in random motion, the mean velocity

v  is expected to be zero. 

¶ While rmsc  has the units of speed, it is not the same as the average speed c .  

¶ For a gas containing atoms of mass m, the average kinetic energy of the atoms can be 

expressed as 

2

2 2

1

2

1 1
 or 

2 2
rms

KE mc

m c mc

=

=

 

 

This is one of the reasons why 
2c  and crms are more useful averages than c  or v . 
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11.3.3 Pressure of an Ideal Gas 

In this section, we will derive the formula for the pressure exerted by an ideal gas. r<c2> 

 

 

To start off, let’s imagine a space enclosed by a cube of side L. To keep things simple, let’s imagine 

that there is only one solitary gas particle of mass m travelling at constant speed v in the x-direction 

in this cube. 

 

Every time it hits the right wall (shaded in green), it rebounds with speed v since an elastic collision is 

assumed. 

 

During each collision, the particle undergoes momentum change of 2p mvD = . 

The time taken for the particle to return to make the next collision is 2t L vD = ·. 

So the average force exerted by one gas particle
22

2

p mv mv
F

t L v L

D
= = =
D ·

. 

L 

L 

L 

m 
v 

x 
z 

y 

v 

v 

m 

m 

http://www.xmphysics.com/11.3.3
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Now let’s upgrade our model to having 1,2,...i N= number of gas particles. For the time being, let’s 

imagine that all the N particles are travelling along the x-axis.  

If we denote the speed of the ith particle by vi, then the ith particle exerts a force of 
2

imv

L
 on the wall.  

This means that the total force exerted on the wall is  

22 2 2

31 2

2 2 2 2

1 2 3

...

( ... )

N

N

mvmv mv mv
F

L L L L

m
v v v v

L

= + + +

= + + +

 

 

Instead of working with individual vi
2 values, it is a lot smarter to work with the mean-square value 

<v2>. So 

2

2

( )
m

F N v
L

Nm
v

L

= < >

= < >

 

 

The pressure on the wall is thus  

2 2

2

3

2

F Nm
p v L

A L

Nm
v

L

Nm
v

V

= = < >·

= < >

= < >

 

where V is the volume of the gas. 

L 

L 

L 

vi 
m 
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Now let’s face the fact that the gas particles are not constrained to move only long the x-axis. So each 

particle, instead of having a single-directional velocity vi, should actually have a three-dimensional 

velocity , y, ,[ , , ]i x i i z iv v v=c . 

  

 

 

Upon closer inspection, we realize that the pressure exerted on the green wall has nothing to do with 

vy and vz. As there is no change to the momentum in the y and z directions when the particles collide 

with the green wall, the pressure exerted on the green wall only depends on vx. So all we have to do 

is to denote the velocity term more accurately in the pressure formula to be  

2

x

Nm
p v

V
= < > 

 

Having said that, we would very much prefer to express the pressure in terms of the actual 3-

deminsional velocity c rather than the single-directional component vx. So is there a link between c 

and vx? 

ci 

v
x
 

v
x
 

v
y
 

v
y
 

v
z
 

v
z
 

c 

c 
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From Pythagoras theorem, we know the magnitudes are related by 

2 2 2 2

x y zc v v v= + +  

 

Working with statistical averages, we can write 

2 2 2 2

2 2 2

x y z

x y z

c v v v

v v v

= + +

= + +

 

 

Since the motion of the gas particles is random, we expect the speed distribution to be uniform in all 

three directions, meaning 
2 2 2 2

x y zv v v v= = = . So 

2 2 2 2

23

x y z

x

c v v v

v

= + +

=

 

Replacing 2

xv with 21

3
c , we obtain 

21

3

Nm
p c

V
=  

Since Nm is actually the mass of the gas M, and density is 
M

V
r= , this equation is also often 

presented as  

21

3
p cr=  

 

We now know exactly how the macroscopic properties of pressure (and density) is related to the 

microscopic property of the molecular motion (of godzillion number of gas particles)! Note that gas 

pressure is directly proportional to the mean-square speed of the gas particles (and not the average 

speed). 

 

 

 

c 

vx 

vy 

vz 
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11.3.4 Internal Energy of an Ideal Gas 

In this section, we will derive the formula for the internal energy of an ideal gas. 

 

We will involve both the equation of state and the kinetic theory formula (see sections 11.3.1 to 11.3.3): 

pV NkT=  

21

3
pV Nm c=  

 

Combining them, we obtain  

2

2

2

2

1

3

3

1 3

2 2

1 3

2 2

Nm c NkT

m c kT

m c kT

mc kT

=

=

=

=

 

 

Recognize that 21

2
mc  represents the average translational KE of gas particles in the gas. We now 

have a good understanding solid handle to what temperature really represents: for an ideal gas, the 

thermodynamic temperature is directly proportional to the average (translational) kinetic energy of the 

gas particles. 

3

2
KE kT=  

 

Remember that the internal energy total totalU PE KE= + ? An ideal gas does not have any potential 

energy. So the total energy U is simply the average KE multiplied by the number of gas particles N. 7 

It turns out that the internal energy of an ideal gas depends only on its temperature. Or in mathematical 

jargon, we say that U is a function of T. 

3 3

2 2
totalU KE NkT nRT= = =  

                                                

7 Actually, for this formula to be valid, the gas must be both ideal (so internal energy does not include any 
microscopic PE) and monatomic (so that the microscopic KE does not include any rotational KE). If you’re 
interested, you can read section 11.A to learn 

http://www.xmphysics.com/11.3.4
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11.3.5 Heat and Work 

There are two ways to raise the temperature of a gas: (1) heat it (2) compress it. 

 

(1) Heat 

Heat transfer requires a temperature gradient. Consider a gas housed in a container. The gas atoms 

are continuously colliding with the atoms of the container’s walls. If the container is at a higher 

temperature than the gas, the atoms of the wall have higher average KE than the gas atoms. So 

during those collisions, the atoms of the wall (which are jiggling more energetically) will tend to pass 

on energy to the gas atoms (which are jiggling less energetically). Heat is thus transferred in this 

manner until thermal equilibrium is attained. 

 

(2) Work 

If you are compressing a gas, you’re doing work on the gas. In the topics of mechanics, you have 

already learnt that there is work done when a force F pushes a body through a distance Ds 

W F s= D 

 

 

Likewise, there is work done when a constant external pressure p compresses a cylinder of gas by a 

volume of DV. Let A be the cross sectional area of the cylinder. The formula can be derived as follow: 

( )

( )

W F s

pA s

p A s

p V

= D

= D

= D

= D

 

 

If the external pressure p is not constant, then we will have to resort to W pdV=ñ . This means that 

the area under the p-V graph represents the work done. 

 

 

Ds 

p 

A 



Ver 1.0 © Chua Kah Hean xmphysics 18 
 

 

 

But where does the work done go to? It goes into the microscopic KE of the individual gas particles!  

 

The diagrams below depict the outcome of elastic collisions between a tiny mass and a massive 

mass8.  

 

 

 

                                                

8  These collisions can be solved very easily because (1) the velocity of the massive mass is practically 

unchanged and (2) RSOS=RSOA. 
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As you can see, the outcome depends on whether the massive mass is stationary, moving closer, or 

moving away from the lighter mass. 

 

The collisions between a gas particle (tiny mass) and a piston (massive mass) is kind of similar. If the 

piston is stationary, the temperature of the gas can remain unchanged. Microscopically speaking, this 

is because the gas particles rebound with no change in speed, so the average KE of the gas particles 

is unchanged. Macroscopically speaking, there is no work done on the gas since DV is zero, so the 

internal energy of the gas is unchanged. 

 

 

On the other hand, an advancing piston can raise the temperature of a gas. Microscopically speaking, 

this is because each gas particle rebounds with a speed higher than before the collision, so the 

average KE of the gas particles increases. Macroscopically speaking, compressing a gas results in 

positive work on the gas (since the external pressure p and DV are in the same direction), so the 

internal energy of the gas increases. 

 

 

On the other hand, a retreating piston can result help a gas cool down. Microscopically speaking, this 

is because each gas particle rebounds with a speed lower than before the collision, so the average 

KE of the gas particles decreases. Macroscopically speaking, allowing a gas to expand against the 

piston results in negative work done on the gas (since the external pressure p and DV are in opposite 

directions), so the internal energy of the gas decreases. 
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11.4.0 First Law of Thermodynamics 

ONU Q WD = +  

This simple looking equation is called the first law of thermodynamics. It is actually a statement of the 

Principle of Conservation of Energy, adapted for thermodynamic processes. It states how energy can 

flow across the boundary separating a system from its surroundings: the increase in internal energy 

of a system DU is the summation of the heat supply to the system Q and work done on the system 

WON.  

 

watch animation at xmphysics.com 

 

Let’s talk about the signs of these three terms: DU, Q and WON. 

 

DU 

Obviously DU is positive when there is an increase in U and vice versa. For an ideal gas, where

3

2
U nRT= , a positive DU also corresponds to an increase in temperature and vice versa.   

 

Q 

Q is positive when heat is supplied to the system, and negative when heat is lost to the surrounding. 

Whether heat is supplied or lost depends on the temperature of the system relative to the surrounding. 

 

WON 

WON is positive when the external pressure compresses the system. WON is negative when the system 

expands against the external pressure. Basically, WON is positive when the volume of the system 

decreases and vice versa. If you must, you can memorise it as ( )ON i fW p V V= -  or ONW p V=- D.  

 

When WON is positive, we say that work is done on the system (by the surrounding). Conversely, when 

WON is negative, we say that work is done by the system (on the surrounding). 

 

Q 

WON 

U 

http://www.xmphysics.com/11.4.0
http://www.xmphysics.com/11.4.0
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In fact, sometimes it is more convenient to talk about work done by the gas WBY instead of work done 

on the gas WON. WBY and WON are just two ways of viewing the same work. The difference between 

them is only in the sign 

BY ONW W=-  

 

As such, the first law is sometimes presented as  

BYU Q WD = -  

 

11.4.1 P-V Diagram 

In this section, we introduce the P-V diagram. Also called the indicator diagram, it was invented by 

James Watt in the 1780s to evaluate the performance of his steam engines. It is basically a chart that 

records the pressure of steam versus the volume of steam in a cylinder. The way he generated the 

chart was quite cute: he attached a board 

to the piston, and a pencil to the pressure 

gauge needle. As the steam engine goes 

through its cycles, the piston moves left 

and right and pressure gauge needle 

rises and falls, and ta-dah the P-V 

diagram is traced out automatically by the 

pencil on the board. 

 

It is a pity that the temperature of the system is not directly displayed in a P-V diagram. For this reason, 

we often overlay a series of isotherms on a P-V diagram (drawn in dashed lines in the P-V diagram 

below). 

p 

V 

WBY 
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Isotherms are lines of constant temperature. For an ideal gas, 
constantnRT

p
V V

= = . This is why all 

isotherms are 
1

x
 curves on a P-V diagram. The higher the temperature, the higher the isotherm. 

For example, in the above P-V diagram, we can tell that the temperature was increasing during BCD 

(T1 to T2 to T5) but decreasing during DAB (T5 to T3 to T1). 

 

 

  

p 

V 

T1< T2< T3<T4<T5 

T1 

T2 
T3 
T4 

T5 

A 

B 

C D 
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11.5.0 Thermodynamic Processes 

For ease of discussion, let’s consider a system consisting of an ideal (monatomic) gas contained in a 

cylinder with a frictionless piston. As a system, the state of the gas is defined by its state variables 

(pressure, volume and temperature). When changing from one state to another, the system traverses 

through many in-between states. The path taken by the gas is called a thermodynamic process. 

 

 

 

There are four kinds of thermodynamics processes that occur frequently in practical situations, namely: 

 

Isobaric: constant pressure  

Isochoric: constant volume ( 0ONW = )  

Isothermal: constant temperature ( 0UD = )  

Adiabatic: zero heat transfer ( 0Q= )  

 

  

p 

V 

State 1 

State 2 

p1 

p2 

V1 V2 

thermodynamic 

process 
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11.5.1 Isobaric 

Isobaric literally means constant pressure. On the P-V diagram, an isobaric expansion is represented 

by a rightward horizontal line. 

 

If we overlay the isotherms onto the P-V diagram, it is obvious that the gas will be at a higher 

temperature after an isobaric expansion, since a rightward horizontal line must end at a higher 

isotherm. A higher temperature means that 0UD > . 

 

The gas expanded, so work is done by the gas and 0ONW < . Since p is constant, the amount of work 

during an isobaric process can be calculated very easily using p VD , which corresponds to the 

rectangular area under the p-V graph.  

 

Applying the first law 

ve ve

ONU Q W
+ -

D = +  

we can deduce that Q is positive. Conclusion: heat is supplied to the gas during an isobaric expansion. 

 

A practical example of an isobaric expansion is as follow: 

We immerse a cylinder of gas in a hot water bath so that heat 

is transferred gradually to the gas. If the heating is gradual, 

the gas will expand slowly. Assuming that the piston is 

frictionless, the gas will always expand just enough so that 

the pressure on both sides of the piston are equal. In other 

words, the heated gas expands at constant pressure of 1 atm. 

 

  

p 

V 

TL 

TH 
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11.5.2 Isochoric 

Isochoric literally means constant volume. On the P-V diagram, an isochoric cooling is represented 

by a downward vertical line. 

 

As the name suggests, isochoric cooling implies a decrease in temperature so 0UD < . But this fact 

can also be inferred from the P-V diagram because a downward vertical line must end at a lower 

isotherm. 

 

Since the volume does not change, 0ONW = . 

 

Applying the first law of thermodynamics, 

0ve

ONU Q W
-

D = +  

it is also clear that Q is negative, i.e. heat is lost to the surrounding during an isochoric cooling. 

 

A simple practical example of an isochoric cooling is to immerse a canister (with rigid walls) of gas in 

an ice bath. 
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V 

TL 

TH 
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11.5.3 Isothermal 

Isothermal literally means constant temperature. On the P-V diagram, an isothermal expansion is 

represented by curve along an isotherm. 

 

Since temperature is constant, 0UD = .  

 

Since the gas expanded, 0ONW < . 

 

Applying the first law of thermodynamics, 

0 -ve

ONU Q WD = +  

we can deduce that Q is positive, i.e. heat must be supplied to the gas during an isothermal expansion. 

 

A practical example of an isothermal expansion is as 

follows: We have a cylinder of gas immersed into and 

at thermal equilibrium with a constant temperature bath. 

Now draw out the piston of the gas extremely slowly. If 

it is done slowly enough, heat can flow from the bath to 

the gas to offset the negative work done on the gas by 

the retreating piston, so that the temperature of the gas 

remains constant. It works better if the wall of the 

cylinder is thin and conductive. 
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11.5.4 Adiabatic 

Adiabatic literally means zero heat transfer, i.e. 0Q= . 

 

If we’re talking about an adiabatic compression, then 0ONW >  since the volume decreases. 

 

Applying the first law of thermodynamics, 

0 +ve

ONU Q WD = +  

we can deduce that DU is positive. An adiabatic 

compression always results in an increase in 

temperature. 

 

On the P-V diagram, an adiabatic compression is 

represented by a curve that climbs from a lower 

isotherm to a higher isotherm. 

 

In theory, an adiabatic compression can be achieved by 

insulating a gas cylinder perfectly, and then compressing 

the gas. In practice, we can simply thrust the piston into 

the cylinder very quickly. For that short duration of time, 

the amount of heat transfer is negligible compared to the 

work done on the gas. So the process is practically 

adiabatic. 

 

 

  

watch videos at xmphysics.com 
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The tables below summarize the signs of the terms in the first law for the different processes. See if 

you agree with them. 

  

Process DU Q WON 

isobaric 
expansion +9 + − 

compression −10 − + 

isochoric 
cooling − − 0 

heating + + 0 

isothermal 
expansion 0 + − 

compression 0 − + 

adiabatic 
expansion − 0 − 

compression + 0 + 

 

  

                                                

9The internal energy must increase since p is constant and V has increased, and pV nRT= .  

 
10 same logic as that for isobaric expansion. 
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11.6.0 Cyclic Processes 

11.6.1 Path Dependence 

 

In the above P-V diagram, an ideal (monatomic) gas started from state 1 and ended in state 2.  

Its internal energy at state 1 is 
1 1 1 1

3 3

2 2
U nRT pV= = . 

Its internal energy at state 2 is 
2 2 2 2

3 3

2 2
U nRT p V= =  

The change in internal energy from state 1 to state 2 is 
2 2 1 1

3 3
( )

2 2
U nR T p V pVD = D = - . 

Because the internal energy is a state function dependent only on the state, DU is not dependent on 

the path taken by the gas to go from state 1 to state 2. 

 

 

To calculate the work done by the gas during state 1 to state 2, we need to know the specific 

thermodynamic processes undertaken by the gas. For example, if the gas underwent an isobaric 

expansion before an isochoric cooling (1→4→2), the work done by the gas is more than if the gas 

p 

V 

1 

2 3 

4 p1 

p2 

V1 V2 
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V1 V2 

p 

V 

1 

2 3 

p1 

p2 

V1 V2 
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underwent an isochoric cooling first before an isobaric expansion (1→3→2). So note that work, unlike 

internal energy, is path dependent. 

 

What about heat? Using our example, we note that DU is the same regardless of the path taken. But 

WON is more negative for path 1→4→2 than path 1→3→2. So it is obvious from the first law 

( )ONU Q WD = +  that Q is more positive for the former. So heat, just like work, is also path dependent.  

 

11.6.2 Cyclic Process 

If a system returns to its original state after a number of processes, we have what is called a cyclic 

process. On the P-V diagram, a cyclic process traces out a closed loop. 

 

In the above P-V diagram, an ideal (monatomic) gas undergoes a cyclic process of 1→2→3→4→1. 

Since it returns to state 1, it must have returned to its original internal energy. So for the complete 

cycle 0UD = . 

 

There is work by done by the gas during 1→2 (the blue rectangle), and work done on the gas during 

3→4 (the red rectangle). So overall, the area enclosed by the cyclic loop (the blue rectangle minus 

p 
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3 4 

2 p1 
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the red rectangle) represents the net work done by the gas during this cyclic process. In other words, 

WBY is positive and WON is negative for this particular cyclic process. 

 

Applying the first law for one complete cycle, 

0 -ve

( )ON

ON

U Q W

U Q W

D = +

D = +
 

we can deduce that Q is positive for this cyclic process. 

 

Now let’s try a different cyclic process. 

 

Notice that state 2 has been removed so the cyclic process is 1→4→3→1. Notice that the direction 

of the loop has also been reversed. Since it is still a cyclic loop, we still have 0UD = . With the switch 

in direction, the work done on the gas (during 3→1) is higher than the work done by the gas (during 

4→3). So the enclosed area represents work done on the gas during this cyclic process. In other 

words, WON is positive and WBY is negative for this particular cyclic process. 

 

From the first law 

0 +ve

ONU Q WD = +  

we can deduce that Q is negative for this cyclic process. 
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Let’s now do some consolidation. 

 

Firstly, note that for all cyclic processes, 

0UD =  

From the first law, 

0

ON

ON

U Q W

Q W

D = +

=-
 

So net Q and net WON are always opposite in signs to each other for a cyclic process. The net work 

done and the amount of net heat transfer is equal to the area of the enclosed loop. 

 

For a clockwise loop, since the gas expands at high pressure but is compressed at low pressure, 

there is net work done by the gas. So WON is negative and Q is positive. This means that in one 

complete cycle, the net heat supplied is equal to the net work done by the system. This is the basis 

of a heat engine (e.g. diesel engine, steam engine) 

 

For an anti-clockwise loop, since the gas is compressed at high pressure but expands at low pressure, 

there is net work done on the gas. So WON is positive and Q is negative. This means that in one 

complete cycle, the net work done on the system is equal to the net heat lost to the surrounding. This 

is the basis for a heat pump (e.g. refrigerator, freezer). 

 

 

watch videos at xmphysics.com 
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Appendix A: Degree of Freedom 

In section 11.3.4, we derived the formula for the internal energy of an ideal (monatomic) gas to be  

3

2
U nRT=  

However, many students through other readings often come across formulas such as 
5

2
U nRT=  or 

even 
7

2
U nRT= . So which formula is correct? 

 

Well, those other variants are the formulas for diatomic or polyatomic gases. And the difference is 

due to this thing called the degree of freedom. 

 

Let’s start from monatomic gases such as He, Neon and Argon, which consist of single atoms (instead 

of molecules). Single atoms are only capable of translational motion. As such, each atom is said to 

enjoy three degrees of freedom, since it is free to move in the x, y and z directions. 

 

Then there is this thing called the equipartition principle, which says that in thermal equilibrium, the 

energy of a system is always distributed equally among all of its possible forms. In fact, the energy 

apportioned to each degree of freedom is 
1

2
kT . Since each atom has three degrees of freedom, 

each atom must be allocated 
3

2
kT  of energy. The internal energy of a monatomic gas with N atoms 

is thus 

3

2

3 3

2 2

U N kT

NkT nRT

= ³

= =

 

 

This is in agreement with our derivation in section 11.3.4. Let’s move on to diatomic gases such as 

H2, N2 and O2. 

x 

z 

y 

translational KE 
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Diatomic molecules are capable of rotational motion. So the two possible axes of rotation correspond 

to two additional degrees of freedom. With five degrees of freedom, each diatomic molecule must be 

allocated 
5

2
kT  of energy. The internal energy of a diatomic gas with N molecules is thus 

5

2

5 5

2 2

U N kT

NkT nRT

= ³

= =

 

 

At very high temperature, diatomic molecules are also capable of vibrational motion. 

 

Basically, the atoms oscillate as though they are connected by a spring. The equipartition principle 

dictates that equal share of energy must be allocated for the vibrational KE and PE. With seven 

degrees of freedom, the internal energy become  

7

2
U nRT=  

 

Polyatomic molecules have even more degrees of freedom compared to diatomic gases. For a start, 

they have three (instead of two) rotational degrees of freedom. They are also able to vibrate in many 

different modes. However, many of these modes are “switched on” only at higher temperature. So the 

formula for the internal energy of polyatomic gases are temperature dependent. 

 

The degrees of freedom actually leave their fingerprints in the molar heat capacities of gases. There 

are two types of molar heat capacities for gases: if the gas is heated at constant volume, we are 

talking about Cv, the constant volume molar heat capacity. If the gas is allowed to expand at constant 
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y 

rotational KE 

z 

vibrational  

KE + PE 
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pressure, we are talking about Cp, the constant pressure molar heat capacity. Amazingly, both Cv, 

and Cp for all ideal gases can be derived in just a few lines. 

 

Let’s start with Cv. Since the gas is held at constant volume, 

0

ONU Q W

Q U

D = +

=D

 

If the gas is monatomic,  

3
( )
2

3

2

3

2

v

v

v

nC T nRT

nC T nR T

C R

D =D

D = D

=

 

Now onto Cp. If the gas is allowed to expand and do work, 

BY

BY

U Q W

Q U W

D = -

=D +

 

If the gas is monatomic,  

3
( )
2

3

2

3

2

5

2

p

p

p

nC T nRT p V

nC T nR T nR T

C R R

R

D =D + D

D = D + D

= +

=

 

Notice that p vC C R- = . The additional heat is required to offset the work done by the gas. 

 

If the gas were diatomic, the only change we have to make to the above analysis is to substitute U 

5

2
nRT  instead of 

3

2
nRT . It does not take much to work out that  

for monatomic gases:
3

2
vC R=  and  

5

2
pC R=  

for diatomic gases:
5

2
vC R=  and  

7

2
pC R=  

 

The table below shows the actual molar heat capacities of some common gases. It is quite satisfying 

to see that the actual values match the theoretical predictions so closely. 
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Type of gas Gas Cv /J mol-1 K-1 Cp /J mol-1 K-1 

Monatomic He 12.47 20.79 

 Ar 12.47 20.79 

Diatomic H2 20.42 28.82 

 N2 20.76 29.12 

 O2 21.10 29.38 

Polyatomic CO2 28.46 36.94 

 H2S 25.95 34.60 

 

The large values of Cv for the polyatomic gases are due to the contributions of rotational energy. 

 

Ok. I hope you find this section interesting. But as far as the H2 syllabus is concerned, we are living 

in an ignorant but blissful world where U is always 
3

2
nRT . Having said that, when solving for DU 

during examinations, between 
ONU Q WD = +  and 

2 1

3 3

2 2
U nRT nRTD = -  , always go for the formal 

approach. This is because 
ONU Q WD = +  is never wrong. On the other hand, 

2 1

3 3

2 2
U nRT nRTD = -  

is correct only if the gas is ideal (so internal energy does not include any microscopic PE) and 

monatomic (so that the microscopic KE does not include any rotational KE). 

  



Ver 1.0 © Chua Kah Hean xmphysics 37 
 

Appendix B: Otto Cycle 

In Section 11.6, we discussed the cyclic process. But without a concrete example, the cyclic process 

can feel like a meaningless concept. So let’s give the Otto cycle a brief study to help you get a better 

grasp of a cyclic process. 

 

Perhaps you are aware that a gasoline engine is an internal combustion engine designed to run on 

petrol. Four-stroke gasoline engines power the vast majority of automobiles, small trucks, buses and 

medium-large motorbikes.  

 

If a car has a 1600 cc engine, it means that the total volume of the cylinders containing the fuel-air 

mixture is 1600 cm3. These cylinders are then put through these four-strokes repetitively (at a few 

thousand RPM): 

1) compression stroke 

2) power stroke 

3) exhaust stroke 

4) intake stroke 

It always amazes me that heavy vehicles and machinery are powered by such a small volume of gas.  
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The Otto Cycle is an idealized cyclic process of the 4-stroke gasoline engine. On the P-V diagram, it 

is represented by four thermodynamic processes: 

Adiabatic compression (process AB), 

which is initiated by the compression 

stroke. 

Isochoric heating (process BC), which 

occurs when the gasoline-air mixture is 

ignited. 

Adiabatic expansion (process CD) during 

the power stroke, when the heated 

mixture pushes on the piston, performing 

work in the process. 

Isochoric cooling (process DA), which 

occurs when the used mixture is dumped 

(during the exhaust stroke) and new fuel 

and cool air is drawn into the cylinder 

(during the intake stroke). 

 

Note that the engine does positive work during the adiabatic expansion (power stroke) but negative 

work during the adiabatic compression (compression stroke). However, since the expansion occurred 

at higher pressure than the contraction, overall, it is the engine that is doing the net work. In fact, the 

area of the enclosed loop represents WBY, the net work done by the gasoline engine in one complete 

cycle.  

 

From the first law 

0 +ve

BY

BY

U Q W

Q W

D = -

=

 

we can deduce that net Q is positive in one complete cycle. This makes sense since this is after all a 

heat engine, whose purpose is to convert heat into mechanical work. From energy consideration, the 

net work done by the engine must be equal to the net heat supply to the engine. 

 

There is one more insight to the Otto cycle. Since 0Q=  for adiabatic processes, heat transfer occurs 

only during the two isochoric processes of the Otto cycle: the heat supplied QH during the fuel 

combustion (process BC) and the heat lost QC to the surrounding when the used fuel is dumped 

(process DA). So 

net BY H cW Q Q Q= = -  
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Noting that useful work output of the engine is BY H cW Q Q= - , while the energy input is HQ , we 

can actually write the efficiency of a heat engine as  

output
1

input

H C C

H H

Q Q Q

Q Q
h

-
= = = -  

 

Unfortunately QC is an unavoidable heat loss. While our heat engine took in QH amount of heat, it 

cannot produce this amount of work. A portion of it, QC, must always be lost as heat to the 

surrounding. It is a reminder of the unfortunate fact that while mechanical work can be completely 

converted into heat (e.g. brake a car), heat cannot be completely converted into mechanical work. 

100% efficiency is impossible in principle. 

 

 

 

 


